436 research outputs found

    The Power of an Example: Hidden Set Size Approximation Using Group Queries and Conditional Sampling

    Full text link
    We study a basic problem of approximating the size of an unknown set SS in a known universe UU. We consider two versions of the problem. In both versions the algorithm can specify subsets TUT\subseteq U. In the first version, which we refer to as the group query or subset query version, the algorithm is told whether TST\cap S is non-empty. In the second version, which we refer to as the subset sampling version, if TST\cap S is non-empty, then the algorithm receives a uniformly selected element from TST\cap S. We study the difference between these two versions under different conditions on the subsets that the algorithm may query/sample, and in both the case that the algorithm is adaptive and the case where it is non-adaptive. In particular we focus on a natural family of allowed subsets, which correspond to intervals, as well as variants of this family

    A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor

    Full text link
    Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient {\em partition oracles}. A {\em partition oracle} is a procedure that, given access to the incidence lists representation of a bounded-degree graph G=(V,E)G= (V,E) and a parameter \eps, when queried on a vertex vVv\in V, returns the part (subset of vertices) which vv belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most \eps |V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/\eps, thus improving on the result of Hassidim et al. ({\em Proceedings of FOCS 2009}) who gave a partition oracle with query complexity exponential in 1/\eps. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.Comment: 13 pages, 1 figur

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in logn\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(logn)O(\log n) to O(logn)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized

    Distributed Maximum Matching in Bounded Degree Graphs

    Full text link
    We present deterministic distributed algorithms for computing approximate maximum cardinality matchings and approximate maximum weight matchings. Our algorithm for the unweighted case computes a matching whose size is at least (1-\eps) times the optimal in \Delta^{O(1/\eps)} + O\left(\frac{1}{\eps^2}\right) \cdot\log^*(n) rounds where nn is the number of vertices in the graph and Δ\Delta is the maximum degree. Our algorithm for the edge-weighted case computes a matching whose weight is at least (1-\eps) times the optimal in \log(\min\{1/\wmin,n/\eps\})^{O(1/\eps)}\cdot(\Delta^{O(1/\eps)}+\log^*(n)) rounds for edge-weights in [\wmin,1]. The best previous algorithms for both the unweighted case and the weighted case are by Lotker, Patt-Shamir, and Pettie~(SPAA 2008). For the unweighted case they give a randomized (1-\eps)-approximation algorithm that runs in O((\log(n)) /\eps^3) rounds. For the weighted case they give a randomized (1/2-\eps)-approximation algorithm that runs in O(\log(\eps^{-1}) \cdot \log(n)) rounds. Hence, our results improve on the previous ones when the parameters Δ\Delta, \eps and \wmin are constants (where we reduce the number of runs from O(log(n))O(\log(n)) to O(log(n))O(\log^*(n))), and more generally when Δ\Delta, 1/\eps and 1/\wmin are sufficiently slowly increasing functions of nn. Moreover, our algorithms are deterministic rather than randomized.Comment: arXiv admin note: substantial text overlap with arXiv:1402.379

    Testing bounded arboricity

    Full text link
    In this paper we consider the problem of testing whether a graph has bounded arboricity. The family of graphs with bounded arboricity includes, among others, bounded-degree graphs, all minor-closed graph classes (e.g. planar graphs, graphs with bounded treewidth) and randomly generated preferential attachment graphs. Graphs with bounded arboricity have been studied extensively in the past, in particular since for many problems they allow for much more efficient algorithms and/or better approximation ratios. We present a tolerant tester in the sparse-graphs model. The sparse-graphs model allows access to degree queries and neighbor queries, and the distance is defined with respect to the actual number of edges. More specifically, our algorithm distinguishes between graphs that are ϵ\epsilon-close to having arboricity α\alpha and graphs that cϵc \cdot \epsilon-far from having arboricity 3α3\alpha, where cc is an absolute small constant. The query complexity and running time of the algorithm are O~(nmlog(1/ϵ)ϵ+nαm(1ϵ)O(log(1/ϵ)))\tilde{O}\left(\frac{n}{\sqrt{m}}\cdot \frac{\log(1/\epsilon)}{\epsilon} + \frac{n\cdot \alpha}{m} \cdot \left(\frac{1}{\epsilon}\right)^{O(\log(1/\epsilon))}\right) where nn denotes the number of vertices and mm denotes the number of edges. In terms of the dependence on nn and mm this bound is optimal up to poly-logarithmic factors since Ω(n/m)\Omega(n/\sqrt{m}) queries are necessary (and α=O(m))\alpha = O(\sqrt{m})). We leave it as an open question whether the dependence on 1/ϵ1/\epsilon can be improved from quasi-polynomial to polynomial. Our techniques include an efficient local simulation for approximating the outcome of a global (almost) forest-decomposition algorithm as well as a tailored procedure of edge sampling

    A Local Algorithm for Constructing Spanners in Minor-Free Graphs

    Get PDF
    Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider this problem in the setting of local algorithms: one wants to quickly determine whether a given edge ee is in a specific spanning tree, without computing the whole spanning tree, but rather by inspecting the local neighborhood of ee. The challenge is to maintain consistency. That is, to answer queries about different edges according to the same spanning tree. Since it is known that this problem cannot be solved without essentially viewing all the graph, we consider the relaxed version of finding a spanning subgraph with (1+ϵ)n(1+\epsilon)n edges (where nn is the number of vertices and ϵ\epsilon is a given sparsity parameter). It is known that this relaxed problem requires inspecting Ω(n)\Omega(\sqrt{n}) edges in general graphs, which motivates the study of natural restricted families of graphs. One such family is the family of graphs with an excluded minor. For this family there is an algorithm that achieves constant success probability, and inspects (d/ϵ)poly(h)log(1/ϵ)(d/\epsilon)^{poly(h)\log(1/\epsilon)} edges (for each edge it is queried on), where dd is the maximum degree in the graph and hh is the size of the excluded minor. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) larger than in GG. In this work, we show that for an input graph that is HH-minor free for any HH of size hh, this task can be performed by inspecting only poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) edges. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of O~(hlog(d)/ϵ)\tilde{O}(h\log(d)/\epsilon) larger than in GG. Furthermore, the error probability of the new algorithm is significantly improved to Θ(1/n)\Theta(1/n). This algorithm can also be easily adapted to yield an efficient algorithm for the distributed setting
    corecore